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Characterization and classification of acoustically
detected fish spatial distributions
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High-resolution, two-dimensional measurements of aquatic-organism density are collected routinely during echo integration trawl
surveys. School-detection algorithms are commonly used to describe and analyse spatial distributions of pelagic and semi-pelagic
organisms observed in echograms. This approach is appropriate for species that form well-defined schools, but is limited when
used for species that form demersal layers or diffuse pelagic shoals. As an alternative to metrics obtained from school-detection algor-
ithms, we used landscape indices to quantify and characterize spatial heterogeneity in density distributions of walleye pollock
(Theragra chalcogramma). Survey transects were divided into segments of equal length and echo integrated at a resolution of
20 m (horizontal) and 1 m (vertical). A series of 20 landscape metrics was calculated in each segment to measure occupancy, patchi-
ness, size distribution of patches, distances among patches, acoustic density, and vertical location and dispersion. Factor analysis indi-
cated that the metric set could be reduced to four factors: spatial occupancy, aggregation, packing density, and vertical distribution.
Cluster analysis was used to develop a 12-category classification typology for distribution patterns. Visual inspection revealed that

spatial patterns of segments assigned to each type were consistent, but that there was considerable overlap among types.
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Introduction

The use of scientific echosounders allows the collection of
high-resolution observations (e.g. 10 m in the horizontal direc-
tion, 0.2m in the vertical direction) on density distributions
of aquatic organisms in the water column. When acoustic data
are displayed in echograms, aggregations (i.e. areas of the
echogram with multiple, non-resolved organisms) are evident
features. Aggregations display a high diversity of spatial patterns,
including schools, shoals, pelagic and benthic layers, and diffuse
“clouds” (Scalabrin et al., 1994; Petitgas and Levenez, 1996; Reid
et al., 2000). A common methodology used to quantify these
patterns and to extract information over a range of spatial
scales (hundreds of metres to tens of kilometres) is echotrace
classification (ETC; Reid et al., 2000). ETC identifies aggrega-
tions in echograms and characterizes them using descriptive
metrics. ICES (2000) reviews the methodology used in ETC
and documents case studies. Usually, ETC uses school-detection
algorithms based on image-processing techniques that detect
and provide quantitative descriptors on aggregations, including
size, total acoustic density, and location in the water column
(see Burgos and Horne, 2007, and references therein). The
description of aggregations obtained from school-detection
algorithms has been wused to study processes in marine
systems, including shoal formation (Rose et al., 1995), schooling
behaviour (Brehmer et al, 2007), predator—prey interactions
(Nottestad et al., 2002), and vertical migrations (Gauthier and
Rose, 2002).

School-detection algorithms may not be appropriate to charac-
terize all spatial patterns observed in acoustic data (Reid et al.,
2000). These algorithms are designed to isolate discrete aggrega-
tions with defined boundaries, utilizing input parameters that
define minimum aggregation size, minimum density, and
minimum separation from other aggregations. Boundaries are
then set around groups of adjacent pixels that satisfy criteria
defined by the input parameters (ICES, 2000; Burgos and
Horne, 2007). The operating assumption is that detected groups
of pixels correspond to biologically meaningful structures (i.e.
schools or shoals). This assumption is not valid for species that
do not form discrete aggregations. For example, gadoids form
diffuse pelagic shoals and continuous pelagic and benthic layers
that may extend for long (>100 nautical mile) distances (e.g.
Walline, 2007) and lack well-defined edges. Owing to the lack of
clear boundaries, aggregation metrics obtained from school-
detection algorithms are highly sensitive to the values of input
parameters (Burgos and Horne, 2007). In these cases, although
they can be used to obtain relative measures of spatial pattern
(Wilson et al., 2003), it is difficult to assign biological significance
to the structures detected.

One possible approach to characterizing spatial patterns in
echograms when aggregations cannot be delimited clearly is to
describe the overall distribution of acoustic density within echo-
gram segments of equal length, also known as elementary
sampling distance units (ESDUs). Reid ef al. (2000) suggest that
the presence of these structures should be inspected visually and
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classified into four echo types. Similarly, Petitgas and Levenez
(1996) proposed a classification system of nine echo types.
Visual inspection can be used to discriminate and categorize
aggregations, but this approach is subjective and may be
time-consuming.

Visual methods of classification can be combined with the use
of descriptive metrics to quantify patterns within ESDUs. For
example, to analyse the distribution of myctophids, Bertrand
et al. (2002) combined visual inspection and classification of echo-
grams with a set of metrics calculated for echogram sections of
equal length. Spatial-aggregation categories included the
sound-scattering layer, the nucleus in the scattering layer, large
aggregated structures, stick-shaped structures, and small aggre-
gates. Metrics calculated in each echogram section included total
acoustic density and the percentage of cells with non-zero
values. Although this approach allowed quantification of struc-
tures lacking defined edges, it still required visual examination
of echograms. An extension of this approach would expand the
number and types of aggregation metric, and use numerical classi-
fication methods to obtain a classification typology.

In recent years, landscape-ecology researchers have proposed a
large number of metrics to measure spatial heterogeneity (e.g.
McGarigal and Marks, 1995). Usually, information on the spatial
composition of the landscape, a region of interest, is displayed in
raster maps, where each pixel is assigned a category. This approach
defines homogeneous regions (Gustafson, 1998) and calculates
indices that quantify their spatial heterogeneity, including compo-
sition (i.e. the number and proportion of patch types), and spatial
configuration (i.e. the size, shape, and location of patches and inter-
spersion among patch types). Usually, these metrics have been used
to describe spatial patterns of landscapes at relatively large
(~100 km) scales (e.g. Schumaker, 1996), although in a limited
number of studies, they have been used to describe small-scale
(~1 m) spatial patterns in benthic communities (e.g. Teixido et al.,
2002). The representation of fish distributions detected acoustically
in an echogram is analogous to a raster map, and landscape
metrics could be used to characterize their spatial patterns.

Here, we develop methods to quantify and classify spatial pat-
terns of acoustic scatterers, using a combination of landscape
indices and additional metrics appropriate for acoustic data. We
divided each echogram into a series of segments or ESDUs, and
calculated metrics to describe the spatial distribution of acoustic
density in each segment. We utilized ordination and clustering
techniques to analyse the relationship among metrics and to
assign echogram segments to a reduced number of categories.
Walleye pollock (Theragra chalcogramma) in the Bering Sea are
used as the test species because they form a diverse array of spatial-
distribution patterns, including patterns known to commercial
fishers as “hay stacks”, i.e. vertically elongated benthic schools,
“cherries”, i.e. spherical pelagic schools, or “carpets”, i.e. benthic
layers. Walleye pollock is an important species in the pelagic and
demersal components of the North Pacific and Bering Sea ecosys-
tems (Springer, 1992), and sustains a large commercial fishery
with landings fluctuating between 1.18 and 1.55 x 10°t in the
period 2000—2005 (National Marine Fisheries Service, 2007).

Methods
Data

The acoustic data used in this study were collected between 2000
and 2002 during five echo-integration trawl surveys in the
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eastern Bering Sea. Surveys were carried out as part of the
regular survey programme of the NOAA Alaska Fishery Science
Center (AFSC) to estimate the biomass of walleye pollock
(Figure 1). Surveys were conducted between February and
March (winter surveys) and between June and July (summer
surveys), following standardized procedures (Karp and Walters,
1994; Honkalehto et al., 2002). For our study, we used 52 transects
from the summer surveys, with a combined total of 28 828 km,
and 53 transects from the winter surveys, totalling 19 140 km.
We used data collected during spawning (winter surveys) and
feeding (summer surveys) periods to obtain a diversity of spatial
patterns. Acoustic data were collected using a Simrad EK500 echo-
sounder, operating a split-beam transducer at a frequency of
38 kHz, with a beam angle of 7° between half power points. The
ping rate was 1s~ ', and the pulse duration was set at 1.024 ms
(Honkalehto et al., 2002). The echosounder was calibrated using
copper spheres following the procedures outlined by Foote et al.
(1987). Staff from the AFSC analyzed the data using a minimum
threshold of —70 dB re 1 m* m™?. Acoustic returns were classified
as walleye pollock or other species, based on the analysis of trawl
samples and on the morphology of echogram patterns observed
in current and previous surveys.

Data were imported into Echoview 3.10 (SonarData, 2004), and
displayed in echograms. A threshold of —55 dB re 1 m* m™ > was
applied to the data, because pixels with lower mean volume-
backscatter strength (S,) were unlikely to contain returns from
walleye pollock (Burgos and Horne, 2007). Echoes from 14 m
below the surface and 0.5 m above the sounder-detected seabed
were not included in the analysis. Regions of the echogram con-
taining returns from species other than adult walleye pollock
were removed using virtual echograms (Higginbottom et al.,
2000). The spatial resolution of the raw data is variable. In the
horizontal direction, the resolution, i.e. one ping, is equivalent
to 5-20 m, depending on vessel speed. In the vertical direction,
the resolution is a function of bottom depth. To have a regular
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Figure 1. Survey transects of two summer (2000 and 2002) and
three winter (2000, 2001, and 2002) walleye pollock surveys in the
eastern Bering Sea.
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and consistent spatial resolution, the acoustic data were echo-
integrated at a horizontal resolution of 20 m (equivalent to 1-4
pings) and a vertical resolution of 1 m, the maximum vertical
resolution available in Echoview for echo integration. A visual
comparison between echograms using the raw acoustic data, as
collected during the surveys, and echograms using the echo-
integrated data revealed that the overall spatial pattern within
each segment was not affected by the reduction in spatial resolu-
tion. The echo-integrated data from each transect were stored
as a matrix, where each cell contained the mean S, of each
20 mx 1 m echogram region. Because each cell in the matrix con-
tained the integrated S, value of 5-20 pixels from the original
echogram, it was possible to have cells with S, values below the
—55dB re 1 m*> m~? threshold. Cells with at least 1 pixel with a
value of S, above threshold were considered occupied cells.
Matrix cells corresponding to pixels in the original echogram
whose values were all below —55 dB re 1 m* m~* were considered
empty or background cells. Cells with mean S, values higher
than —39.67 dBre 1 m*> m™ > were considered errors in seabed
detection, or noise in the water column. This upper threshold
corresponds to a walleye pollock of 40-cm fork length (i.e. the
mean size of adult pollock captured on trawl samples during the
surveys) and an average spatial separation of one body length.
These cells were coded as empty cells or as cells below the
seabed, depending on their position.

Characterization of spatial patterns in echograms

To quantify spatial patterns in density distributions of walleye
pollock, we used a connected component algorithm to detect
patches of occupied cells within echogram segments of equal
length. A series of descriptive metrics was calculated in each
segment to characterize spatial patterns.

Echogram segmentation

Echograms from each transect were divided into segments of
1.84 km (~1 nautical mile), starting at the beginning of and
continuing until the end of each transect. Most transects were
intermittently interrupted for fishing or other vessel manoeuvres,
resulting in spatially, but not temporally, continuous data. All
transect interruptions were identified using cruise-log notes.
Whenever there was an interruption, the current segment was
ended and a new segment started after the location of the interrup-
tion. This avoided possible artefacts from echogram segments
containing data that were not continuous in time. Echogram
segments <900-m long were removed from further analysis.

Patch detection and characterization

We utilized a connected component algorithm (Han and Wagner,
1990) to identify patches in each echogram segment. A patch was
any single or group of adjacent cells, following the eight-neighbour
rule, corresponding to pixels with a volume-backscatter coefficient
equal to or above a threshold value of —55dBre 1 m’m 2 i.e.
occupied cells. The concept of a patch is analogous to “schools”
or “aggregations” in ETC, but is less restrictive because no
minimum-size criteria were applied, and there was no assumed
correspondence to biological aggregations, i.e. schools or shoals.
Patches were considered only within the boundaries of each
segment. In cases where patches extended beyond the limits of a
segment, only the portion within the segment was considered.
The area- and line-backscattering strength (S;, MacLennan et al.,
2002) were calculated for each patch.
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Calculation of metrics

Spatial patterns in each echogram segment were quantified using
a set of descriptive metrics. Metrics were selected by visually
inspecting echograms of walleye pollock and identifying aspects
of spatial distributions that varied among them. These included
occupancy, patchiness, size distribution of patches, distances
among patches, acoustic density, mean vertical location, and devi-
ation in vertical location. The number of metrics that could be
used to quantify these characteristics is large, because each charac-
teristic can be described in several ways. As an example, spatial
occupancy can be described using the proportion of pixels above
threshold, the number of patches, or the total patch area. We
initially calculated 47 metrics in each echogram segment. It is
likely that some of these metrics were redundant and were
highly correlated. To identify redundant metrics, we calculated
Spearman’s “measure-of-association” and, following Riitters
et al. (1995), grouped those that were highly correlated (p >
0.9), and selected one from each group. We avoided metrics
with highly skewed values and preferred those that were simple
to compute and to interpret. The final number of metrics was
20. A complete list of metrics is presented in the Appendix,
together with calculation details.

Exploratory factor analysis

To analyse relationships among metrics, we used exploratory
factor analysis (EFA; Fabrigar et al., 1999). EFA models the
covariance among observed variables through a reduced number
of unobserved variables or factors. The variables observed are
assumed to be a linear function of one or more factors. The
interpretation of each factor is based on variables that contribute
high loadings (usually with absolute values >0.5) to each factor.

The first step in EFA is to select the number of factors to include
in the common factor model. To select the appropriate number,
we used parallel analysis (Montanelli and Humphreys, 1976).
This technique calculates eigenvalues of multiple sets of random
data: in our case 1000 sets. These eigenvalues were compared
with those calculated from the reduced correlation matrix of the
observed data, i.e. a correlation matrix with the square of the mul-
tiple correlation coefficient between each variable and all other
variables placed in the diagonal. The number of factors included
in the model corresponds to the number of eigenvalues in the
observed data that are larger than the median eigenvalues obtained
from the random set. The common-factor model was fitted follow-
ing the iterative principal factor method, using a convergence
criterion of 10~ * (Rencher, 2002).

EFA models with more than two factors do not have a unique
solution. A common approach to select a solution is to search a
simple structure, in which each factor is defined by a subset of
observed variables with high loadings, and each observed variable
has high loadings on a subset of factors (Fabrigar et al., 1999). This
is achieved by rotating the factors in multidimensional space.
There are many rotation methods available. We used the promax
rotation (Hendrickson and White, 1964), a non-orthogonal
rotation that allows for correlation among factors. The model
was fitted using the principal-factor method, which does not
assume multivariate normality in the observed variables. Factor
scores for each echogram were predicted from the common-factor
model using the regression method, minimizing the mean square
error (Rencher, 2002).
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If factor scores summarize the spatial patterns observed in
echograms, then echograms with similar factor scores should
have similar patterns. To verify this assumption, we divided the
range of each factor score into ten intervals and randomly selected
up to 20 echograms from each combination of intervals.
Echograms were inspected visually for consistency in their
spatial patterns. Aspects considered included overall echogram
arrangement, e.g. proportion of occupied cells, patchiness, and
vertical distribution, and the presence of similar structures, e.g.
schools, layers, or shoals.

Development of a classification typology

We were interested in classifying patterns observed in echograms
into a relatively small number of categories and in developing a
classification typology. We used cluster analysis to detect groups
of echogram segments within the multidimensional space
defined by the factor axes. Factor scores were first standardized,
subtracting the mean and dividing by the standard deviation, to
ensure that all factors were equally weighted during the cluster
analysis. We used model-based clustering (Fraley and Raftery,
2002), where observations are assumed to come from a mixture
of multivariate normal densities. Each cluster is centred at its
mean, where the density of points is highest. Depending on the
cluster covariance structure, the shape, volume, and orientation
of clusters can be the same or vary among clusters. Model selection
includes selecting the number of clusters and the covariance struc-
ture and is based on the Bayesian Information Criteria (BIC;
Raftery, 1995). A maximum BIC score provides evidence of a
model and an associated number of clusters (Fraley and Raftery,
2002). Model fitting uses the expectation-maximization (EM)
method (Dempster et al., 1977). The algorithm was initialized
assigning each observation to a cluster using hierarchical cluster-
ing. Next, a series of iterations was performed, each consisting of
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two steps. The first step estimates the conditional probability for
each observation belonging to each cluster, based on the current
parameter estimates. In the second step, model parameters are
updated using a maximum-likelihood criterion. Steps are repeated
until convergence, defined as the change in likelihood of the model
parameters estimated in successive iterations. Cluster membership
is assigned to the cluster with greatest probability. A measure of
classification uncertainty can be obtained by subtracting this prob-
ability from 1. Cluster analysis was carried out using the library
“mclust” (Fraley and Raftery, 2006) in the R statistical environ-
ment (R Development Core Team, 2006). To describe spatial pat-
terns assigned to each cluster, a random sample of 60 echogram
segments was selected from the samples with a classification uncer-
tainty of 0.2 or lower, a value arbitrarily chosen to define low
classification uncertainty. Echograms were examined visually for
consistency in their spatial patterns, including overall echogram
arrangement and the presence of similar structures.

Results

Data analysis and metric calculations

We obtained 10 802 echogram segments, after dividing transects
from the five surveys and removing segments that did not
contain acoustic returns from walleye pollock, or were <900 m
in length (n=2348). A few (n=358) segments were also
removed because some of the metrics could not be calculated.
As an example, nearest-neighbour-distance (NND) could not be
computed for segments containing a single patch. Table 1 provides
summary statistics of the 20 metrics calculated in each echogram
segment. To illustrate the potential range of metric values for
spatial patterns common in walleye pollock, we calculated repre-
sentative metric values for three 18.4-km long echograms, corre-
sponding to ten consecutive echogram sections of 1 nautical
mile. These sections contained typical aggregation patterns

Table 1. Summary statistics for descriptive metrics calculated for 10 802 echogram segments, each 1 nautical-mile-long, obtained from five

echo-integration trawl surveys in the eastern Bering Sea.

Metric Mean

Standard deviation Kurtosis Skewness

Patch density (PD)

2.59E-04

2.61E-04 5.65 1.54

Index of aggregation (lagg)

3.89E-04

4.75E-04 691 1.96
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observed among walleye pollock: schools (i.e. small aggregations
with well-defined boundaries), a large pelagic shoal (i.e. large
aggregation with diffuse boundaries), and a benthic layer (i.e. a
large aggregation with limited vertical extension located near the
bottom; Figure 2). Metric values reflect differences among these
type patterns. The pelagic shoal is characterized by high spatial
occupancy [measured by percentage of landscape (PLAND)],
and low values of landscape division index (LDI), indicating
high aggregation levels. Well-defined schools are characterized
by high values of LDI, indicating high fragmentation, high S,90,
indicating the presence of pixels with high acoustic density, and
low PLAND. Values for the benthic-layer segments are intermedi-
ate. Differences in the vertical distribution are well characterized
by the percentiles of biomass depth (BD10, BD50, and BD90).
Values were high for the benthic layer, indicating that most of
the biomass was near the bottom, low for the pelagic layer, and
intermediate for schools.

Factor analysis

Parallel analysis, based on comparing the eigenvalues of the
reduced correlation matrix for observed data with the median
eigenvalue of multiple sets of random data, indicated that the
optimal number of factors for the EFA was four (Figure 3). The
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fact that differences between consecutive eigenvalues were larger
among the first four eigenvalues than among all other eigenvalues
supports this conclusion (Fabrigar et al., 1999).

Results of the EFA calculations are summarized in Table 2. The
four factors explained 63.6% of the variance of the dataseries. The
promax rotation successfully produced factors characterized by
variables where high loadings of any variable were restricted to
one factor. Each factor can be interpreted based on variables that
have loadings >0.5. In our case, the four factors measure spatial
occupancy, aggregation level, packing density, and vertical distri-
bution. Most metrics had correlations >0.5 with at least one of
the factors. Two exceptions included inertia in the horizontal
(inx) and vertical (iny) directions that, owing to their high varia-
bility, did not have high loadings on any factor. The results of the
EFA were validated by randomly splitting the dataset in two and
repeating the analysis in each half (Fabrigar et al., 1999). Factor
loadings obtained in both halves matched those obtained with
the full dataset. The scores of variables with high loadings differed
by a maximum of 1.78% relative to the scores obtained with the
full dataset. Sample echograms with scores ranging from low to
high for each factor are shown in Figure 4. Echograms with
similar factor scores had similar patterns, suggesting that factor
scores adequately summarize the range of aggregation types for
walleye pollock.
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Figure 2. Spatial-density distributions of walleye pollock: well-defined schools, a large pelagic shoal, and a benthic layer, and corresponding
values of descriptor metrics. Each echogram represents 10 nautical miles of survey track, divided into segments of one nautical mile. Metrics
include PLAND, 10th, 50th, and 90th percentiles of biomass depth (BD10, BD50, and BD90), volume-backscattering strength (S, mean), 10th,
50th, and 90th percentiles of acoustic density (S,10, S,50, and S,90), landscape-division index (LDI), and 10th, 50th, and 90th percentiles of

relative patch area (RA10, RA50, and RA90).
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w_]° in highly occupied echograms, a larger proportion of the total patch
area corresponded to larger patches. The negative loading assigned
o ©- to the index of aggreg.atior.l (Tagg) is a result of the large number
2 of patches observed with high occupancy levels.
g <o .
g Factor 2: aggregation level
i ~ OO Factor 2 was interpreted as a measure of aggregation, explaining
S 15.8% of the variance. Metrics with high positive loadings on
%0000 this factor included two measures of relative patch size (RA10
o 00000000000 . . .
T T T T and RA50), and the median distance to the nearest neighbour
5 10 15 20

Index

Figure 3. Plot of eigenvalues, sorted in decreasing value, of the
reduced correlation matrix of the 20 descriptive metrics calculated in
10 802 echogram segments. The dotted line is the mean eigenvalues
of 1000 sets of random data. The number of eigenvalues in the
observed data greater than the eigenvalues of the random sets
indicates the appropriate number of factors to be used in an EFA.

Factor 1: spatial occupancy /patch size

The first factor explained 24.7% of the variance and was interpreted
as a combination of spatial occupancy and patch size. It represents
a gradient from empty to fully occupied echograms. Measures of
patch density (PD), percentage of landscape (PLAND), 10th,
50th, and 90th percentiles of patch size (A10, A50, and A90), and
mean acoustic density (S, mean) had loadings >0.5, indicating
that highly occupied echograms tend to have more biomass,
larger patches, and a higher number of patches. The high correlation
with the 90th percentile of relative patch area (RA90) indicates that

Table 2. Results of the EFA.

(medNND). The LDI had a high negative loading. Low scores of
factor 2 represented echograms that contained highly fragmented
acoustic backscatter. Fragments were small aggregations or indi-
vidual pixels. In these echograms, a larger proportion of the occu-
pied area corresponded to small patches, and distances among
patches tended to be small. High scores in factor 2 corresponded
to echograms with high aggregation levels.

Factor 3: packing density

Metrics with high loadings on the third factor included S,10, S,50,
and S,90, three metrics that characterize the distribution of acous-
tic density within the 20x1-m cells. Echogram segments with
higher scores in factor 3 tended to have cells with high values of
acoustic density. Factor 3 explained 12.1% of the total variance.
This factor was interpreted as an index of packing density (i.e.
the number of fish per unit volume of water).

Factor 4: vertical distribution
The fourth factor explained 11.0% of the variance and was inter-
preted as an index of vertical distribution. Quantiles of biomass

Parameter Factor 1 Factor 2 Factor 3 Factor 4
Proportion of variance 0.247 0.158 0.121 0.11
R oy s
Metric Loadings

Patch density (PD) 0.685* —0.321 —0.22 —02

Index of aggregation (lagg)

The four-factor model had 116 degrees of freedom and explained ~64% of the variance in the metrics dataset. Metrics with absolute loadings >0.5 (marked
with an asterisk) were considered important in the interpretation of each factor. Factor scores with absolute values <0.1 are not displayed.
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Figure 4. Sample echograms for each factor representing the range of factor scores. Echograms in each row correspond to a factor score

approximately at each 25th percentile of the factor range.

depth (BD10, BD50, BD90), which describe the vertical distri-
bution of acoustic backscatter, had high positive loadings.
Because these metrics were expressed as a proportion of the
average bottom depth in the segment, high scores in factor 4 indi-
cated that biomass was located near the bottom, and low scores
that biomass was distributed throughout the water column.

Relationships among factors

We described relationships among factors using only echogram
segments with PLAND > 0.006 (n=6575). Visual inspection
revealed that echograms with lower values of spatial occupancy
had no discernible spatial patterns. Factor scores from those echo-
grams do not provide information on spatial patterns.

To analyse relationships among factors, we used paired density
plots (Figure 5), because scatterplots were too cluttered and trends
were not easily discerned. The significance of pairwise relation-
ships was tested using Spearman’s rank-correlation test. Factor 1
had a significant positive correlation with factor 2 (p=0.69, p <
2.2E—16), indicating that echogram segments with high spatial
occupancy tended to have larger patches and high aggregation
levels. Factor 1 also had a significant positive correlation with
factor 3 (p=0.22, p <2.2E—16), indicating that echograms
with high occupancy had, on average, cells with high S, values.
Despite the significant correlations, there was considerable varia-
bility in the relationship among factors. The highest scores in
factor 3 were in echograms with intermediate scores in factor 1,
indicating that there was a trade-off between spatial occupancy
and packing density. Factor 1 was not significantly correlated
with factor 4 (vertical distribution). Factor 2 had a significant posi-
tive correlation with factor 3 (p=0.34, p < 2.2E—16), indicating
that echograms with high aggregation tended to have cells with
high values of packing density. Factor 2 also had a significant cor-
relation with factor 4 (p=0.23, p < 2.2E—16). This reflects the

fact that walleye pollock is a semi-pelagic species and, usually,
biomass is concentrated on or near the seabed (Karp and
Walters, 1994). When aggregation levels were low, the biomass
was distributed through a larger proportion of the water
column. Finally, factors 3 and 4 were positively correlated (p=
0.09, p = 6.75E — 14), indicating that there was a tendency in echo-
grams with biomass concentrated near the bottom to have pixels
with relatively high values of packing density.

Riitters ef al. (1995) suggested that the metric with the highest
loading in each factor can be used as a surrogate, by extension, of
the complete set of metrics. In our case, these metrics for the four
factors were the 90th percentile of patch area (A90), the 10th per-
centile of the relative patch area (RA10), the 50th percentile of
pixel acoustic density (S,50), and the 50th percentile of biomass
distributions (BD50). The high (>0.9) correlation among these
metrics with their respective factors suggests that they are appro-
priate surrogates.

Development of classification typology

Cluster analysis was also performed on echogram segments with
PLAND > 0.006. The model with the greatest support corre-
sponded to 12 ellipsoidal clusters with an unconstrained variance
structure, allowing for differences in volume and shape (Figure 6).
The BIC for this model was —43 911.52, 41.6 units larger than the
model with the next highest BIC, indicating that there was strong
evidence of this model (Raftery, 1995). The fact that ~60% of the
observations had a classification uncertainty of 0.2 or higher indi-
cates that there was great overlap between clusters. There was no
significant relationship between cluster size and classification
uncertainty (linear regression, r*= 0.04, p =0.54). For example,
the largest cluster (Cluster 7, n=1105) was also the best defined
(with 97.0% of the observations having a classification uncertainty
<0.2), whereas observations assigned to the second largest cluster
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Figure 5. Paired density plots of factor scores calculated in echograms with PLAND > 0.006 (n = 6575). Association among factors was tested
using Spearman’s p statistic. Kernel-density estimates of each factor are included on the diagonal.
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ellipsoidal model with unconstrained variance and 12 clusters.

(Cluster 5, n=1010) had a relatively high classification uncer-
tainty. Factor scores for each cluster are displayed using
diamond plots (Figure 7), in which each axis represents one
factor. Differences in the distribution of factor scores among clus-
ters are characterized by the shape of the corresponding diamond

plots. A description of spatial patterns observed in randomly
selected echograms of each cluster is presented in Table 3.
Patterns in some clusters were consistent (e.g. clusters 1, 5, and
10), whereas others included echograms with a high diversity of
spatial patterns (e.g. clusters 4, 6, and 9). Clusters with low
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Figure 7. Diamond plots of factor scores from 12 clusters. Each axis in a plot represents one factor, starting from the horizontal positive axis
and continuing anticlockwise. The continuous line indicates mean factor values, and dotted lines represent the 0.25 and 0.75 quantiles.

classification uncertainty had greater consistency in spatial
patterns among echogram segments.

Discussion

The first objective of this study was to characterize spatial
distributions of walleye pollock using acoustic data. Echogram
segments with similar factor scores, i.e. within the same factor
intervals, had similar spatial patterns, suggesting that factor
scores provide an adequate quantification of these patterns.
Because all factors had appropriate surrogate metrics, i.e. metrics
with correlation values >0.9 with the factor, future studies
could use these surrogate metrics, simplifying data analysis, and
interpretation while retaining most of the information on spatial
patterns.

Our second objective was to develop a classification typology
of walleye pollock aggregations. Characteristic spatial patterns of
walleye pollock include bottom layers, pelagic layers, and discrete
schools. If these spatial patterns are distinct, then the cluster analy-
sis should have separated types and grouped echogram segments
into discrete categories. In our case, the optimal cluster model
included 12 clusters, which is a larger number of categories than
in other classification typologies (e.g. Petitgas and Levenez, 1996;
Reid et al., 2000; Bertrand et al., 2002). The large proportion of
observations with high classification uncertainty suggests that
aggregations of walleye pollock cannot be classified into discrete,

well-defined groups. Instead, the distributions form a continuum
along each of the four factors. The 12 clusters represent regions of
the four-dimensional space with high densities of observations. A
typology is possible, even if clusters overlap (Legendre and
Legendre, 1999), but overlap increases the classification uncer-
tainty of individual samples. We propose that rather than using
discrete categories, the analysis of spatial patterns in fish distri-
butions should be conducted using continuous metrics.

Results are dependent on the set of metrics used to describe
spatial patterns. The descriptive metrics that we used here were
selected after visually inspecting echograms of walleye pollock
and considering the echogram types proposed by Petitgas and
Levenez (1996), Reid et al. (2000), and Bertrand et al. (2002).
Gustafson (1998) proposed that pattern metrics should be selected
according to the pattern or heterogeneity that is relevant to the
process being studied. In our case, there is little information on
the biological or physical processes that influence the spatial-
distribution patterns of adult walleye pollock, in particular at
spatial scales <10 km. Previous studies examined the influence
of water temperature and thermocline depth (Swartzman et al.,
1994) and of prey abundance and water circulation (Hollowed
et al., 2007) on its distribution, but a comprehensive study has
not been completed. In this case, a natural first step was to select
a broad array of metrics that would quantify the spatial com-
ponents that vary among echogram sections.
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Table 3. Echogram-segment membership and uncertainty in clusters.
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Cluster n % Cl <0.2 Observed spatial patterns

1 67 65.0 Diffuse, low acoustic-density pelagic layers. Centre of mass is near the seabed, but scatters cover most of the water
column

o e Diffuse, medium a cousthdenSIty pelaglc Iayers L ng e

3 397 531 | High acoustic-density benthic carpets and fragmented carpets of varying thickness, usually restricted to the bottom
one-third of the water column. Benthic schools can also be found

PR e . gh R ty : Iayers L parate P, ngh L denmy T S

macrostructures on or off the seabed

Patches of high acoustic density located in the upper two-thirds of the water column. Large diversity of patterns:
pelagic schools, pelagic shoals, pelagic layers, and low-density scatters

Very dense aggregations located mostly in the bottom one-fifth of the water column. Patterns observed include
thick benthic layers, shoals, benthic schools, and semi-pelagic layers

echograms

Almost empty echograms. Few small scatters in the bottom one-third of the water column

12 533  26.1

Small scatters in the lower two-thirds of the water column. Small pelagic schools and thin layers appear in few

Number of echograms in each cluster (n), percentage of echograms low classification uncertainty (Cl <0.2), and description of spatial patterns observed in

echograms assigned to each cluster.

An additional consideration for metric selection was their
uniqueness (Haines-Young and Chopping, 1996). The term
“uniqueness” refers to the unequivocal relationship between
pattern and metric values, in other words knowledge of the
metric value should allow the prediction of the pattern. We visu-
ally inspected echograms across the range of each metric, allowing
the rest of the metrics to vary. In general, there was great variability
in the patterns observed, suggesting that the uniqueness of each
metric is relatively low. Patterns in echograms sampled across
the range of each of the four factors were more consistent
(Figure 4), indicating that the uniqueness of factor scores is
greater than that of individual metrics, and supporting the use
of factor scores to index distribution patterns.

The sensitivity of metrics should be considered when using
indices to describe spatial patterns. Ideally, each metric should
vary when the pattern changes and should be able to differentiate
between patterns (Baskent and Jordan, 1995). It is difficult to evalu-
ate the sensitivity of the metrics used here, because there is no inde-
pendent quantification of the pattern being described. If we assume
that variability in distribution patterns is being described, then the
distribution of metric values provides information on its sensitivity.
Metrics with a limited range of values, or whose distributions are
highly skewed or kurtotic, have low sensitivity. From the variables
used in this study, inertia in the vertical direction (iny) and
median distance to the nearest neighbour (medNND) had high
skewness and kurtosis, perhaps indicating low sensitivity.

An important step in our methodology was selecting the length
of the echogram sections. It has been recognized that selecting the
appropriate scale is a critical step in the analysis of spatial patterns
(Horne and Schneider, 1995; Gustafson, 1998). Two components
of scale are considered: the grain or resolution (i.e. the size of
the sampling unit), and the extent or size of the study area
(Turner et al., 1989; Wiens, 1989). The length of echogram seg-
ments, together with the bottom depth, defines the area over
which the descriptive metrics are applied. The echogram length

also becomes the resolution of the data when analysing abundance
and spatial patterns at larger scales. Ideally, the scale of observation
should match the scales of the patterns or processes being
described (Gustafson, 1998). Although scale-dependent descrip-
tions of fish density have not shown a characteristic scale of high
variability (Horne and Schneider, 1997), we wanted to match
the length of the echogram segments to the average size of the
walleye pollock distributions. Echogram segments should be
long enough to include several aggregations, yet short enough to
characterize spatial variability in aggregation patterns. Several
studies have reported the sizes of walleye pollock aggregations.
Kang et al. (2006) reported shoal lengths of the order of 5km,
and as large as 10 km off the coast of Japan, but provided no infor-
mation on how representative these school lengths were. Wilson
et al. (2003) reported aggregation lengths for adult walleye
pollock in the Gulf of Alaska ranging between 200 and 400 m,
with variogram ranges of 2.1-11.8 km. Although Mello and
Rose (2005) related the variogram range to average patch size,
results from Wilson et al. (2003) suggest that for the adults,
there are at least two spatial structures, with ranges of approxi-
mately 100s of metres to 2—10 km. This latter scale matches
observations by Horne and Walline (2005), who described scale-
dependent variability of walleye pollock in the eastern Bering
Sea, and inferred a mean patch size of 2—3 km, based on results
of spectral analysis and variogram ranges. On the other hand,
Walline (2007) reported larger (>100 nautical miles) aggregations
in the same area. An appropriate choice for an echogram-segment
length would match the lower limit of this spatial range, corre-
sponding to the ESDU length of 1 nautical mile (~1.84 km)
used in this study. Descriptive metrics calculated in echogram seg-
ments of this size would capture the small-scale heterogeneity
described by Wilson et al. (2003), and would be appropriate to
describe patterns over the range of the survey. As expected, echo-
gram sections were large enough to include several small benthic
or pelagic schools. At the same time, larger structures such as
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pelagic shoals or benthic carpets were included in several contigu-
ous echogram segments.

The reduction of spatial resolution in the data to 20 x I m may
have introduced bias in the calculation of metric values. During
data processing, we reduced the resolution of the acoustic data
from one horizontal ping, between 5 and 20 m, depending on
vessel speed, to 20 m, and from one vertical sampling bin,
usually 0.2 m, depending on the sampling rate, to 1m.
Whenever a 20x 1-m cell contained at least one pixel above
threshold, the entire cell was considered an occupied cell. These
steps potentially increase the size of patches and the proportion
of the echogram containing occupied cells, which would affect
metric values based on the number of cells and patch size
(e.g. PLAND, A50). It is likely that there was some aliasing of
patch edges and merging of nearby patches, reducing the
number of patches and affecting the measurements of PD,
PLAND, and fragmentation (Iagg and LDI), and reducing NND
(Haines-Young and Chopping, 1996). Biases are assumed to be
small because a 20x1-m resolution maintained the observed
spatial patterns, and also constant because all echogram segments
were analysed at the same resolution.

We have quantified and classified density distributions of
walleye pollock using landscape and other metrics. Given the
high diversity in the distribution types observed, we believe that
the methods developed here could be used to analyse the spatial
heterogeneity of any species, regardless of its spatial distribution.
This approach is also applicable to any acoustically acquired, two-
dimensional data. For species that form well-defined aggregations,
it complements the results from school-detection algorithms (Reid
et al., 2000) by quantifying the spatial distribution around
detected aggregations and providing a spatial context to
aggregation-based descriptors (Brehmer et al., 2007). For echo-
grams where acoustic returns from multiple species are separated
in space, analyses can be carried out for each species. Spatial
relations among patches of different species could then be quanti-
fied. The next steps in our research are to characterize the spatial
distribution of pattern descriptors at scales >2 km, to characterize
seasonal and interannual differences in walleye pollock distri-
butions, and to examine the correlation of these descriptors with
physical variables.

The methods proposed here could also be applied to historical
series of acoustic data, with the objective of describing spatial and
temporal changes in distribution patterns. Pattern changes could
be associated with fishing activity, short-term environmental
factors (e.g. seasonal or annual fluctuations), and long-term pro-
cesses such as climate change. This information could be used
potentially to identify spatial or temporal trends as part of an
ecosystem-based approach to fisheries management.
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Appendix

Metrics used to characterize patterns in echogram segments
(ESDUs)

The area of each echogram segment does not include the area
below the seabed. The density of individuals in each pixel is
assumed to be proportional to the volume-backscatter coefficient
(Sy; MacLennan et al., 2002). For percentile-based metrics, percen-
tiles were calculated from the inverse of the empirical distribution
function (Hyndman and Fan, 1996).

Patch density (PD): the number of patches divided by the area of
the echogram segment.

Percentage of landscape (PLAND): the total patch area expressed
as a percentage of the area of the echogram segment. PLAND can
vary between 0, for empty echograms, and 1, for fully occupied
echograms with no pixels below threshold.

Landscape division index (LDI):
fragmentation. LDI is calculated as

a measure

of patch

n

LDI=1— Z(%)z

i=1

where 7 is the number of patches, a; the area of patch 7, and A the
area of the echogram segment. LDI can vary between 0, when the
entire echogram segment is covered by a single patch, and 1, when
there is a single patch, one cell in area (McGarigal and Marks,
1995).

Patch area—10th, 50th, and 90th percentiles (A10, A50, and A90):
percentiles of the patch-area distribution.
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Relative patch area—10th, 50th, and 90th percentiles (RA10,
RA50, and RA90): percentiles of the patch-area distribution,
expressed as a fraction of the total patch area.

Biomass depth—10th, 50th, and 90th percentiles (BD10, BD50,
and BD90): percentiles of weighted pixel depths. Weighted pixel
depths (wpd) are defined as wpd = pd x S,/sbd, where pd is the
pixel depth, measured from the water surface, S, the pixel volume-
backscatter coefficient, and sbd the mean bottom depth in the
current echogram segment.

Median distance to nearest neighbour (medNND): the median
distance from each patch to its nearest neighbour, measured
from patch edge to patch edge.

Volume-backscattering strength (S, mean): volume-backscattering
strength of the echogram segment (MacLennan et al., 2002).

Acoustic density—10th, 50th, and 90th percentiles (S,10,
§,50, and $,90): percentiles of the distribution of the volume-
backscattering strength (S,; MacLennan et al., 2002) of individual
pixels. Only pixels above the threshold are considered.

Index of aggregation (Iagg): metric proposed by Bez and
Rivoirard (2001) to measure aggregation using density data. It is
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calculated as

where z is the density of individuals in each sample, in our case
each echogram pixel, and S the area of the sampling unit (20 m?).

Inertia in the horizontal and vertical directions (inx and iny):
measurement of the variability of the spatial distribution of
individuals. As proposed by Bez and Rivoirard (2001), inertia is
the square deviation of the location of individuals from its mean.
Inertia in the horizontal and vertical directions is computed as:

Y- (Cxz/ Y 2) 2
>z
Y-y Y 2) 2
>z '

inx =

iny =

where z is the density of individuals, x the horizontal location of the
sample, and y its vertical location.
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